Optimal transport for stationary point processes
Description Phase 2
Description Phase 1
Preprints/Publications
David Dereudre, Daniela Flimmel, Martin Huesmann, Thomas Leblé: (Non)-hyperuniformity of perturbed lattices (05/2024)
Martin Huesmann, Thomas Leblé: The link between hyperuniformity, Coulomb energy, and Wasserstein distance to Lebesgue for two-dimensional point processes (04/2024)
Martin Huesmann, Bastian Müller: A Benamou-Brenier formula for transport distances between stationary random measures (02/2024)
Brian C. Hall, Ching-Wei Ho, Jonas Jalowy, Zakhar Kabluchko: Zeros of random polynomials undergoing the heat flow (08/2023)
Jonas Jalowy, Zakhar Kabluchko, Matthias Löwe, Alexander Marynych: When does the chaos in the Curie-Weiss model stop to propagate? (07/2023)
Matthias Erbar, Martin Huesmann, Jonas Jalowy, Bastian Müller: Optimal transport of stationary point processes: Metric structure, gradient flow and convexity of the specific entropy (04/2023)
Brian Hall, Ching-Wei Ho, Jonas Jalowy, Zakhar Kabluchko: The heat flow, GAF, and SL(2;R) (04/2023)
Martin Huesmann, Bastian Müller: Transportation of random measures not charging small sets (03/2023)
Jonas Jalowy: The Wasserstein distance to the Circular Law (11/2021)
Members
-
Prof. Dr. Matthias Erbar
Universität Bielefeld
Principal Investigator -
Prof. Dr. Martin Huesmann
Universität Münster
Principal Investigator -
Dr. Jonas Jalowy
Universität Münster
Associated Scientist -
M. Sc. Bastian Müller
Universität Münster
Associated Scientist -
M. Sc. Hanna Stange
Universität Münster
Associated Scientist