Morphometric Roughness of Nanostructured Surfaces

Description

Surfaces with roughness on the nanoscale offer promising prospects for applications such as reducing or preventing pathogens from adhering to the surface of implants.
The proposed project will develop a rigorous morphometric analysis to unravel the complex interplay of the random geometries and physical properties, in particular bacterial adhesion.

In a direct collaboration of theory and experiment, we develop a precise description of surface roughness that captures global features and correlations while being suitable for daily laboratory use. This includes improved shape descriptors (based on Minkowski functionals) and measurement protocols, as well as the development of process-driven physical models of nanostructured surfaces (rigorously expressed as random fields), and statistical hypothesis tests.

The mathematical analysis is motivated by the experimental challenges of nanostructured surfaces and applied to AFM measurements to provide new standard techniques for characterizing nanostructured surfaces in experiments.

Preprints/Publications

No preprints from this project yet.

Members

  • member's portrait

    Prof. Dr. Karin Jacobs

    Universität des Saarlandes
    Principal Investigator
  • member's portrait

    Prof. Dr. Klaus Mecke

    Friedrich-Alexander-Universität Erlangen-Nürnberg
    Principal Investigator
  • member's portrait

    Dr. Michael Klatt

    Princeton University
    Associated Scientist
  • member's portrait

    M. Sc. Jens Uwe Neurohr

    Universität des Saarlandes
    Associated Scientist

Project Related News